Ecological modelling with Simile

Lecture 4 Part A: Conditional submodels Part B: Association submodels

Robert Muetzelfeldt Jasper Taylor Jonathan Massheder

www.simulistics.com

Feb 2006

Part A Conditional submodels

What are conditional submodels used for?

A particular subsystem that may or may not be present e.g.:

- In different instances (forest on land)
- at different times (seasonal plants)
- for different conditions (plankton in ocean)

How do we set one up?

- A submodel with a 'condition' component
- Square box with '?' on
- Equation is boolean, like what comes after 'if'
- Submodel can have dimensions, but must not be a population
- Diagram has '...' notation

Using variable-membership models⁵

6	quation for volume								
	Label:	Local nar	ie:	_				Units:	
	Forest/volume	{volur	ne}					list(1)	
Influ	ence coming c	out gets 'lis	st' di	me	ns	io	ns	. so:	
• ca	nnot be used o	directly						·	
 use a cumulative function, such as sum() 									
 don't take it out of lots of nested submodels at once 									
	Available functions	Available indic	es					1	Equation:
	sum (array/list of scalars) (📥	Dimension 1 of Pato	:h (10] 📥	1			inter se	sum({volume}]	
	product (array/list of scale			1)	8	1		
	any (array/list of booleans			7	8	9	***		Description:
	all (array/list of booleans)			1	5	6			
26	parent (numeral) returns in channel is (numeral) retur					and and a			Comments:
<u> </u>	init_time (numeral) returns			1	2	3).te	-	
	time (numeral) returns num			8		D	EL.		

Part B Association submodels

What are association submodels used for?

- Interactions that depend on proximity, similarity, reference
- Move values between instances in variablemembership submodels
- Speed up calculations of fixed interactions

7

Examples of associations

- Neighbourhood, land use change
- Proximity:
- shading, seeding, grazing
- Fixed association: parenthood
- Social constructs: tenure, territory, mating

More examples of associations

Example 1: Field ownership

We want to model a collection of farmers owning a collection of fields. Each field is owned by one farmer; one farmer can own several fields.

Information is to be transferred from a field to the farner that owns it: e.g. the area of the field, the yield obtained from it, etc.

Create the submodels representing the farmers and fields

```
ID = index(1)
ownerID = int(rand_const(0,10))+1
area = 1
```


Add the 'ownership' submodel.

Create the association between farmers and fields

cond1 = ID == ownerID

Work out the total area per farmer

Farmer/total area = sum({area}) (to farmer in owner)

Ownership/area = Field/area (from Field in owned)

Example 2: Water flow between soil layers

Problem: to simulate soil water dynamics

- Illustrates the use of Simile for 1-D spatial modelling
- Implements the concept of the 'above' association between Layers

1) Create the compartments

layer_number = index(1)

water = 0

Add in the flows

outflow = 0.2*water

17

18

Create the 'above' association between layers

Create a variable to link the flows

20

Link the variable to the outflow of the 'upper' level

21

Link the variable to the inflow of the 'lower' level

Add in the rain flow to the top layer

Example 3: Land-use change

Problem: to simulate land-use change at the forest margin

- Illustrates the use of conditional submodels: the forest and crop submodels may or may not 'exist' in a patch
- Implements the concept of the 'next-to' association between patches
- Illustrates the use of Simile for spatial modelling

Create a multiple instance submodel so as each plot can have a different position

column = floor((index(1)-1)/10)+1
row = fmod(index(1)-1,10)+1

Specify the types of land that will be used

Add an existence condition to the 2 land types

Create a compartment that defines the state of a particular plot

state = if row < 3 then 2 else 1
exists/Forest = state == 1
exists/Crop = state == 2</pre>

Set the conditions for a change of state

change_to_crop = if state==1 and sum({volume})>rand_var(250,400) and n_crop_neighbour > 1.9 then 1 else 0 change to forest = if state==2 and sum({time under crop})>100 then 1 else 0

Make a way of changing the state of a plot

change_state = if change_to_crop == 1 then 1/dt(1)
 elseif change_to_forest == 1 then -1/dt(1) else 0

Add an association submodel that exists if any 2 plots of land are next to each other

condition = not(column == column_0 and row == row_0)
 and abs(column - column_0) <1.5 and
 abs(row - row_0) <1.5</pre>

Complete the model by working out how many crop neighbours a particular plot has.

crop_neighbour = if state == 2 then 1 else 0
n_crop_neighbour = sum({crop neighbour_0})

Land-use change: results

