Ecological modelling with Simile

Lecture 1

Part A: Introduction to ecological modelling Part B: Introduction to Simile Part C: System Dynamics in Simile

> Robert Muetzelfeldt Jasper Taylor Jonathan Massheder

www.simulistics.com

Aims of course

- How to model (using Simile as the modelling platform)
- How to use Simile to model (for those with experience in modelling)
- Raise awareness of possibilities
- Role of modelling in the research community

Part A Introduction to ecological modelling

Core concepts

- Purpose
- Idealisation
- Design
- Syntax
- Semantics
- Modelling paradigms

Purpose

- "a model for...", not "a model of..."
- Prediction Management Testing understanding
- Problems when purpose is <u>not</u> clearly defined: e.g. IBP models

Idealisation

- The simplification needed to satisfy our purpose
- No need to apologise for an appropriately-simplified model

Design

7

- cf architectural design map making
- Design criteria: accuracy, use of data, cost of development, ease of use, simulation speed, understandability
- Constrained by available building blocks

Syntax

- The elements of the design language: vocabulary
- How they can be put together: grammar

Semantics

- What do the building blocks 'mean'?
- What constitutes good model design?
- How does the model relate to real-world objects and relationships?

Modelling paradigms

- Paradigm: "a conceptual framework within which scientific theories are developed"
- A "school of thought" within which the modeller operates
- Examples: System Dynamics object-based statistical rule-based linear programming

differential equation multi-agent probabilistic cellular automaton discrete-event

Compartment-flow (System Dynamics) is a good paradigm for ecological modelling because...

11

- it builds on existing concepts
- it's diagrammatic
- it's in widespread use
- it encourages a layered approach (conceptual structure before mathematical detail)
- it's applicable to a wide range of ecological and environmental problems
- it's a suitable basis for computer modelling software

Object-oriented modelling is a good paradigm for ecological modelling because:

12

- there's a close correspondence between the objects in the real world and the objects in the model.
- it reflects the idea that many individuals follow the same rules.
- it enables us to talk about the hierarchical composition of some ecological system.
- it enables us to describe relationships between things (shading, closeness, ownership).
- it enables processes of creation and destruction of things to be represented in a natural way.

Part B Introduction to Simile

Background to Simile

- DFID/FRP Agroforestry Modelling Project
- Undergrad/MSc teaching
- FLORES
- ModMED
- Commercialisation

Simile: key features

- Combines System Dynamics and object-based modelling approaches
- Intuitive graphical user interface
- Highly-efficient simulations (in C++)
- Supports modular modelling
- Customisable input/output tools
- Open format (Prolog/XML) for saved models

Modelling concepts supported by Simile

- System Dynamics
- Differential/difference equations
- Age/size/sex/species classes
- Objects: multiple, create/destroy, associations
- Spatial: layers, grid, polygons etc
- Modularity

Sample screen display (classic)

🔄 Run control	- O ×
Execute for	10
	unit 🖂

Sample screen display (new)

The Toolbar

The Desktop

20

The Equation Dialogue

Equation for growth						x
Label:	Local name:				Units:	Alter
gr biomass	gr biomass				int 1	
Available functions	vailable indices	Í a			Equatio	n:
sum (array/list of scalars) (product (array/list of scala		< > [> ->] .	=	gr*(1-biomass/20)	4
count (array/list of any typ any (array/list of booleans		7	8 9	*	Descripti	on:
all (array/list of booleans) parent (numeral) returns in		4	5 6	-		
channel_is (numeral) retur		1	2 3	+	Commer	ts:
init_time (numeral) returns time (numeral) returns num dt (numeral) returns numer	M	0	. D	EL		*
C Has equation Min. O Input parameter Max. C File parameter Units: 1			h graph I table		<u>QK</u> <u>Cancel</u>	

The sketch-graph window (1)

The sketch-graph window (2)

The sketch-graph window (3)

Run Control and Helper windows

Some display helpers

Ť

Part C System Dynamics in Simile

System Dynamics symbols

Compartment

- amount of some substance
- ideally, label as object:substance e.g. sheep_biomass
- typical units: kg, kg m-2, numbers, numbers ha-1
- exceptionally, non-substance things like height, position
- also called 'state variable', stock, level
- unlike real compartments, can go negative
- unlike real compartments, has infinite capacity
- cannot receive an influence arrow changes only from flows
- rate of change is the net effect of all inflows minus all outflows
- two connected compartments must have same substance, same units
- can only contain one substance

Flow

- usually corresponds to a process
- represents an absolute rate (cf specific rate for some parameters)
- units are compartment units/time
- corresponds to the additive terms in a differential-equation model
- can be negative (flow in reverse direction)
- may be several flows between two compartments, in either direction
- preferable to have one flow for each separately-analysable process (e.g. types of mortality)

Cloud

- used exactly like a compartment (at start or end of a flow)
- its value is irrelevant, unknown, unspecified (so can't be set or plotted)
- corresponds to 'the outside world'
- cannot receive or be the source of an influence arrow

Variable

- parameter:
 - 'constant' during simulation run
 - typically, a coefficient in an equation
 - never needed: can use numeric value in equation instead
- intermediate variable
 - both source and recipient of influence arrows
- output variable
 - used only for reporting on model behaviour
- exogenous variable
 - an 'external variable': just a function of time
 - influences the model, but is not influenced by it
 - typically, climatic factors

Influence

- often (but not always) corresponds to link in an 'influence diagram'
- captures the idea that something affects something else
- formally, represents the fact that one term is used in the calculation of another (i.e. appears on the right-hand-side of the function used to calculate the other)
- can start from a compartment, flow or variable
- can go to a flow or a variable (<u>not</u> to a compartment, except to for initialisation)

Equation

- says how a value for a variable is to be calculated
- often, represents the relationship between one quantity (Y), and one or more influencing quantities (X1, X2 etc)
- uses standard algebraic expressions
- may include a sketched graph function
- may include a tabulated function
- may include conditional elements
- in Simile, a single 'equation window' is used for all quantities (incl. parameters and initial compartment values)

Compartments and flows

Object	Substance	Units	Flow	Units
grass	biomass	kg	growth,	kg y ⁻¹
		kg m ⁻²	grazing	$kg m^{-2} d^{-1}$
grass	nitrogen	kg	uptake,	kg y ⁻¹
			grazing	
grass.roots	nitrogen	kg	uptake	kg y ⁻¹
red deer			reproduction,	y ⁻¹
			mortality	ha ⁻¹ y ⁻¹
tree	height	m	growth	$m y^{-1}$
bare land	area	ha	burning, re-	ha y ⁻¹
			colonisation	

Choice of substance (1) - biomass only

Choice of substance (2) - biomass and numbers

Making your first model

- System Dynamics models (in Stella, ModelMaker...)
- 'cycle' diagrams (energy, nutrient, hydrological cycles)
- Differential/difference-equation models
- Design your own

Building models from 'cycle' diagrams Plant

5. Implement the model!

S Desktop (SIMILE model: pred3.sml) **Building models from** differential equations

dX/dt = r.X - e.X.Y

dY/dt = c.e.X.Y - d.Y

File Edit View Model Tools Help

- 0 ×