
The Simile visual modelling environment

Robert Muetzelfeldt �, Jon Massheder

The University of Edinburgh, Institute of Ecology and Resource Management, Darwin Building, King’s Buildings, Mayfield Road,

Edinburgh EH9 3JU, Scotland, UK

Abstract

Simile is a visual modelling environment that has been developed to overcome the problems involved in implementing

agro-ecological simulation models using conventional programming languages: problems such as the effort and skill

needed to program the models, the lack of transparency in models implemented as programs, and the lack of re-

useability of models and submodels. It combines the familiar System Dynamics (compartment-flow) paradigm with an

object-based paradigm, allowing many forms of disaggregation to be handled, as well as spatial modelling and

individual-based modelling. Its visual modelling interface makes it accessible to non-programmers, at the same time

allowing models to be largely self-documenting. Models can be run very efficiently as compiled C�/�/ programs, and

users can develop new visualisation tools for displaying model results. Simile has been used in international research

programmes, including the modelling of Mediterranean vegetation dynamics and modelling the interaction between

households and land at the forest margin in developing countries. Simile has been developed in a spirit of open

standards for model sharing. Models are saved as a text file in a structured format, with a view to enable model sharing

with other modelling environments and to encourage others to develop additional tools for working with models.

# 2002 Elsevier Science B.V. All rights reserved.

Keywords: Modelling; Modelling environment; Simile; Declarative modelling

1. Introduction

For a number of years, there has been consider-

able unease with the traditional method of im-

plementing agro-ecological models, based on

writing computer programs to solve the model

equations (Reynolds and Acock, 1997). Generally,

this has been expressed in terms of the desirability

of a modular modelling approach, in order to

avoid duplication of effort by allowing re-use of

standard modules for (e.g.) crop growth or soil

water dynamics. The issues run deeper than this,

however, and relate to the role of modelling as a

scientific activity, calling for complete transpar-

ency, reproducibility and verification of models as

components of scientific argumentation.

Various solutions have been proposed:

(1) Improved software engineering practices for

implementing models in conventional program-

ming languages. This has in general involved the

development of standards for the programming

interface of models and the submodels they con-

tain, in order to improve modularity and to allow

� Corresponding author. Tel.: �/44-131-650-5408; fax: �/44-

131-662-0478

E-mail addresses: r.muetzelfeldt@ed.ac.uk (R. Muetzelfeldt),

j.massheder@ed.ac.uk (J. Massheder).

Europ. J. Agronomy 18 (2003) 345�/358

www.elsevier.com/locate/eja

1161-0301/02/$ - see front matter # 2002 Elsevier Science B.V. All rights reserved.

PII: S 1 1 6 1 - 0 3 0 1 ( 0 2 ) 0 0 1 1 2 - 0

mailto:r.muetzelfeldt@ed.ac.uk
mailto:j.massheder@ed.ac.uk


for the development of generic control routines
and input/output routines. The rationale here is

that, if models are going to be implemented as

computer programs, this might as well be done in a

principled manner, with clean distinctions between

the module(s) containing the model itself and

those concerned with running the model. One

example of such an approach is FSE, the Fortran

Simulation Environment (van Kraalingen, 1995),
which is being used as the basis for the re-

implementation of the DSSAT family of crop

models (Porter et al., 1999). APSIM (McCown et

al., 1996), a crop modelling environment, exem-

plifies the development of a fixed framework for

modular modelling.

(2) Simulation languages for models based on

sets of differential-algebraic equations have been
around since the 1970s. In Dynamo (Richardson

and Pugh, 1981), the equations are expressed in

terms of System Dynamics, while in continuous

systems modelling program (CSMP) and advanced

computer simulation language ((ACSL): http://

www.acslsim.com/) the equations relate directly

to differential equations: the differences are small

and essentially cosmetic. CSMP was promoted
extensively by crop modellers in Wageningen in

the 1970s (de Wit and Goudriaan, 1974), but is

now essentially dead, while ACSL has been used

more recently for some important grass and crop

models (Johnson and Thornley, 1985).

(3) Visual modelling environments, based on the

System Dynamics paradigm for continuous sys-

tems modelling, have dramatically improved the
accessibility of modelling tools to students and

researchers with few programming or mathemati-

cal skills. The main contenders (Stella, Model-

Maker, Vensim and Powersim: see Reference

section for URLs) offer similar features, and

have been used for serious research modelling:

indeed, three special issues of the journal Ecologi-

cal Modelling have been devoted to Stella models
alone (Costanza et al., 1998; Costanza and Got-

tlieb, 1998; Costanza and Voinov, 2001).

(4) Object-oriented (OO) and component-based

approaches are increasingly popular. An OO

approach emphasises the correspondence between

objects in the real world and ‘objects’ in the

software engineering sense, and allows for the

inheritance of attributes and behaviours from
more general to more specific classes. It tends to

be used within a particular modelling project, and

is seen as a valuable way of increasing the

modularity of model design: indeed, a special issue

of the journal Ecological Modelling on ‘Modular-

ity in Plant Models’ concentrated exclusively on

OO methodology (Acock and Reynolds, 1997;

Sequeira et al., 1997; Acock and Reddy, 1997;
Lemmon and Chuk, 1997; Chen and Reynolds,

1997; Timlin and Pachepsky, 1997). Component-

based methods, on the other hand, tend to be

developed to allow the integration and interoper-

ability of modules, often using existing code,

implemented in different languages and on various

platforms. Potter et al. (2000) evaluated the use of

Microsoft’s Distributed Component Object Model
in forest ecosystem modelling, while van Evert and

Bolte (this issue) describe MODCOM, a system

which aims to facilitate the assembly of simulation

models from previously and independently devel-

oped component models. However, it is notable

that the community is still very fragmented: no

common standards have emerged, and incompa-

tible approaches are used by different groups.
Simile is our attempt at addressing the problems

with modelling. It uses a visual modelling interface

because we believe that provides the best way for

building, analysing and communicating models.

But it aims to overcome the deficiencies of existing

visual modelling environments by providing far

greater expressiveness, including the ability to

handle disaggregation, spatial modelling, and
dynamically-varying populations of objects. It

provides for efficient simulation of complex mod-

els as compiled C�/�/ programs. And it is based

on the view that modelling is a design activity, and

that an essential requirement for collaborative

modelling is the development of a common,

standard language capable of representing models

as designs. More information on Simile can be
found at http://www.ierm.ed.ac.uk/simile.

2. Main features

Simile is derived from Agroforestry Modelling

Environment (AME), the AME (Muetzelfeldt and

R. Muetzelfeldt, J. Massheder / Europ. J. Agronomy 18 (2003) 345�/358346

http://www.acslsim.com/
http://www.acslsim.com/
http://www.ierm.ed.ac.uk/simile


Taylor, 1997a,b). While Simile is a generic model-
ling environment, the original requirement to

handle process-based interactions in complex

tree-crop systems has led to it having a number

of features not usually found together. Simile

extends AME in a number of ways, including the

ability to have external data files and a new, single-

window user interface for running simulations.

2.1. Visual modelling

In common with other visual modelling envir-

onments, Simile supports a two-phase approach to

model construction. The first phase involves the

drawing of diagrams that show the main features

of the model. The second phase involves fleshing-

out the model-diagram elements with quantitative

information: values and equations.

2.2. System Dynamics

Simile allows models to be formulated in System

Dynamics terms: that is, as compartments (stocks,

levels) whose values are governed by flows in and

flows out. This can be considered as a visual

language for representing differential-equation

models, with a compartment representing a state

variable, and the rate-of-change being the net sum
of inflows minus outflows. This commitment to

System Dynamics means that we restrict the

modelling to continuous-time/discrete-time sys-

tems (differential/difference equations): Simile

does not support discrete-event modelling. How-

ever, the vast majority of agro-ecological models

are based on continuous or discrete time, so this is

hardly a restriction.

2.3. Disaggregation

Simile allows the modeller to express many

forms of disaggregation: e.g. age/size/sex/species

classes. This is done by defining how one class

behaves, then specifying that there are many such

classes.

2.4. Object-based modelling

Simile allows a population of objects, such as

animals or trees, to be modelled. As with disag-

gregation, you define how one member behaves,

then specify that there are many such members. In

this case, the model designer provides rules for

specifying when new members of the population

are created, and for killing off existing members.
Individual members of the population can interact

with others.

2.5. Spatial modelling

Spatial modelling, in Simile, is simply a special

form of disaggregation. One spatial unit (grid

square, hexagon, polygon. . .) is modelled, then
many such units are specified. Each spatial unit

can be given spatial attributes (area, location), and

the proximity of one unit to another can be

represented.

2.6. Modular modelling

Simile allows any Simile model to be inserted as
a submodel into another Simile model. Having

done this, the modeller can then manually make

the links between variables in the two components

(in the case where the submodel was not designed

to plug into the main model); or links can be made

automatically, giving a ‘plug-and-play’ capability.

Conversely, any submodel can be extracted and

run as a stand-alone model (‘unplug-and-play’),
greatly facilitating the testing of submodels of a

complex model.

2.7. Fast simulation

Models can be run as compiled C�/�/ pro-

grams. In many cases, these will run at speeds

similar to a hand-coded program, enabling Simile

to cope with complex models (100s equations;
1000s object instances).

2.8. Customisable output displays and input tools

Simile users can design and implement their own

input/output procedures, independently of the

R. Muetzelfeldt, J. Massheder / Europ. J. Agronomy 18 (2003) 345�/358 347



Simile developers. In particular, one can develop
displays for model output that are specific to one’s

own particular requirements. Once developed,

these can be shared with others in the research

community.

2.9. Declarative representation of model structure

Most agro-ecological models are implemented
procedurally */as a set of instructions for simulat-

ing the behaviour of the model, programmed in a

conventional programming language such as For-

tran or C. Simile, in common with simulation

languages and other visual modelling software,

represents models declaratively */as a set of state-

ments defining the structure of the model. These

statements are stored in an open, structured
format in a text file (unlike some modelling

packages, which use a proprietary binary format).

This approach allows for other groups to develop

software for processing Simile models. For exam-

ple, one group may develop a new way of

reporting on model structure, while another may

wish to undertake automatic comparison of the

structure of two similar models. It also opens the
way for the sharing of models between different

modelling environments.

3. The modelling language

Within the domain of continuous-time/discrete-

time modelling, Simile aims to provide a ‘one-stop

shop’: to enable modellers to build whatever
models they want within a single environment.

This is highly ambitious: there are many different

types of models: statistical, process-based, spatial,

Leslie matrix, Markov chain, cellular automaton,

etc. How can a single language cope with all these

types?

Clearly, we cannot have constructs in the

language specific to each type of model: the
language would have a large number of constructs,

and be very difficult to learn. Instead, we need to

come up with a set of low-level modelling con-

structs (primitives) that enable the various types of

models to be constructed, without necessarily

using the terms or concepts associated with each

model type. In a sense, a programming language
(such as C) does this already*/but its constructs

are at too low a level, too far removed from the

concepts used by the modeller, hence requiring

large programs and specialist skills. The challenge

for the designer of a modelling language is to avoid

a proliferation of symbols in the language, while at

the same time retaining intuitiveness and expres-

siveness.
Our solution to this problem is based on a

formal language that enables models to be speci-

fied in terms of 12 basic elements. Although in

principle one can construct a model by creating a

text file in this language, this would be a difficult

and error-prone process, so we have produced a

graphical user interface which enables a model to

be created diagrammatically, using 11 icons (Fig.
1). These symbols fall naturally into two classes:

those concerned with standard System Dynamics

concepts, and those based on submodels and a

notion of ‘object’. These icons have a direct

correspondence with the elements in the under-

lying formal language, with the exception that the

‘function’ element does not have an icon.

3.1. System Dynamic components

System Dynamics notation (Forrester, 1961) is

an intuitive and widely-used way of describing

continuously-varying systems. It is a particularly

appropriate language for describing ecological

systems, since it combines concepts of amount,
flow and influence: many ecological researchers

use such notation to describe the system they are

investigating even if they have no experience in

modelling. Most of the visual modelling environ-

ments used in ecological and agronomic research

and education are based on System Dynamics

Fig. 1. The eleven symbols that constitute Simile’s diagram-

ming language. See text for an explanation of the role of each

symbol.

R. Muetzelfeldt, J. Massheder / Europ. J. Agronomy 18 (2003) 345�/358348



notation. Therefore, we made a commitment early
on to include System Dynamics notation in

Simile’s visual modelling language.

System Dynamics, as realised in Simile, is based

on four symbols:

(1) The compartment (also known as stock,

level) can be thought of as representing the

amount of some substance (such as money, water,

carbon or nitrogen). More generally, the compart-
ment is a visual representation of a mathematical

state variable, and thus can be used to represent

quantities whose behaviour is governed by a

differential equation but which do not really

represent ‘amount of substance’: e.g. height of a

tree or position of a moving object.

(2) The flow arrow represents a process that

contributes to the rate of change of a compart-
ment. A compartment may have multiple inflows

and outflows: the net rate of change of the

compartment is the sum of the inflows minus

outflows.

(3) A variable represents some other quantity in

the system under consideration. A variable in

Simile can represent a parameter, an intermediate

variable, an exogenous variable or an output
variable, depending on its influence links with

other variables and the expression used to calcu-

late its value.

(4) The influence arrow shows visually which

quantities are used to calculate which other

quantities.

3.2. The submodel and associated symbols

The submodel construct is the key to Simile’s

ability to handle a wide variety of model-design

requirements.

Essentially, the submodel is a container for

some collection of model elements, including

System Dynamics elements and other submodels.

At the simplest level, it can be used to divide a
complex model visually into different sections-

rather like the ‘sector’ in Stella. Used in this way,

it has no implications for the mathematical

structure of the model. The submodel can also be

used for modular modelling, since a submodel can

be saved to file and loaded from file independently

of the model it is in, rather like the ‘co-model’ in
Powersim or the ‘submodel’ in ModelMaker.

However, the real power of the submodel comes

when we specify that there are multiple instances

of a submodel. This is roughly analogous to the

notion of ‘class’ and ‘object’ in OO software

engineering: the submodel represents the class,

and the multiple instances represent multiple

objects belonging to the class. In this section, we
briefly summarise some uses of the submodel from

a modeller’s perspective, introducing the remain-

ing model-design symbols in the process.

3.2.1. Disaggregation

Modellers frequently divide some component

into a fixed number of elements. This is generically

referred to as ‘disaggregation’. For example:

�/ a population may be divided into a number of

age, size, or sex classes;

�/ a vegetation component may be divided into the
several species that make it up;

�/ soil, or a forest canopy, may be divided into a

number of layers;

�/ an area may be divided into grid squares,

polygons, or some other form of spatial unit.

The usual way of allowing this in visual model-

ling environments is to use an array structure for

every disaggregated variable. In Simile, in con-

trast, one wraps the appropriate model elements in
a submodel*/then simply specifies a number of

instances for this submodel as a submodel prop-

erty. Visually, the submodel is drawn with a ‘stack

of cards’ boundary. Each instance can be given

specific attributes, e.g. x and y co-ordinate and

soil type for spatial grid-squares.

3.2.2. Individual-based modelling

Individual-based modelling (Grimm, 1999) is

generally seen as an alternative to System Dy-
namics modelling, and modelling environments

have been developed that specifically support this

approach (Lorek and Sonnenschein, 1999). Simile

supports individual-based modelling, by allowing

a population of individuals to be specified, while at

the same time allowing the behaviour of each

R. Muetzelfeldt, J. Massheder / Europ. J. Agronomy 18 (2003) 345�/358 349



individual, or of other components of the system,
to be expressed in terms of System Dynamics.

For example, a modeller might represent the

vegetation in terms of compartments and flows,

while the herbivores might be represented as

individual animals, which are created, grow and

die. In order to do this, a submodel is specified as

being a population submodel (again, in its Proper-

ties box). Visually, the submodel now appears with
a shadow line for the top- and left-edges, and

another for the bottom- and right-edges. Model

elements (Initialiser, Migrator, Reproducer and

Eliminator (Fig. 1) can be added for specifying: the

initial number of instances; the rules for the

creation of new individuals in absolute numbers

or for each existing individual; and the elimination

of those already in the population.

3.2.3. Conditional existence of some part of the

model

Modellers frequently need to be able to specify

the conditional existence of some part of a model.

For example:

. You may want to have several alternative ways

of modelling some part of the system (e.g. a

growth function), only one of which is active in

any one run of the model. A flag determines

which one is active.

. You may want to model a set of species using a
single submodel, but with only some species

present in any one run of the model.

. You may want to model a number of spatial

patches, some of which contain one land use

type, and others of which contain another. You

need to include a submodel for each one within

the multiple-instance patch submodel*/but

switch one or the other on in a particular patch.

All these situations can be handled in Simile
using a conditional submodel. This is simply a

normal submodel, but with a condition symbol

added (Fig. 1). Visually, we can tell that it is a

conditional submodel both by the presence of the

condition symbol, and by a set of dots going down

diagonally to the right from the submodel envel-

ope. The condition contains a boolean expression:

if this evaluates to ‘true’, then the submodel (or an
instance of it) exists; if not, then it does not.

3.2.4. Using a submodel to specify an association

between objects

Once our modelling language allows us to think

in terms of multiple objects of a certain type, then

it is frequently the case that we start to recognise

relationships between objects. These relationships

may be:

. between objects of the same type: one tree

shades another; one grid square is next to

another; one person is married to another; or

. between objects of one type and objects of
another: one farmer owns a field; one field

is close to a village.

Since Simile is a visual modelling language, and

since such relationships are an important aspect of

the design of a particular model, Simile provides

visual elements to show diagrammatically such

relationships between objects. Since the term

‘relationship’ is normally used in Ecological Mod-

elling to refer to a relationship between variables

(as opposed to objects), we use the term ‘associa-
tion’ instead, in line with the terminology of the

Unified Modelling Language (UML) (Stevens and

Pooley, 2000).

An association can itself have properties. We

can, for example, have a variable representing the

actual distance between a field and a village: this is

a property of neither the field nor the village, but

of the association between them. In Simile, the
submodel is the construct that is able to hold a

number of quantities, so we use a submodel to

represent an association. We show which objects

have a role in the association by drawing a role

arrow (Fig. 1) from the submodel representing the

object to the association submodel, one for each of

the two roles in the association.

The association submodel also has an important
role to play in passing information between the

objects that participate in the association: for

example, information on the yield from each of a

farmer’s fields would be pass through the associa-

tion submodel specifying which farmers own

which fields. This can greatly improve the compu-

R. Muetzelfeldt, J. Massheder / Europ. J. Agronomy 18 (2003) 345�/358350



tational efficiency of complex models, since pro-
cessing occurs only for the interactions where an

association exists, not for all possible interactions

between objects.

3.3. Data structures and the equation language

3.3.1. Data types

Simile currently supports three data types: real
(floating point), integer, and booleans. In general,

Simile will infer the type of a quantity from the

expression used to produce it. During the model-

design process, it continually checks for consis-

tency. For example, if A influences B and the

expression 2�A is entered for B, then Simile

assumes that B is numeric. If A is subsequently

given a boolean value, it flags that the expression
for B is incorrect.

3.3.2. Data structures

Simile handles scalars, arrays (of multiple di-

mensions) and lists. Data structures can be nested

to any depth. So you can have an array in which

each element is itself an array, each element of

which is a list of scalars.

In many cases, the data structure will be created
automatically by Simile. For example, if you create

a submodel with 10 instances, and take an

influence from the submodel to a variable outside

it, then the quantity exported from the submodel is

automatically a 10-element array. If you do the

same thing for a population model, then the

exported quantity is a list (since the number of

values is not pre-determined).
The user can also create data structures expli-

citly. For example, if you enter the expression

[10,20,30,40,50] in the equation box for a variable,

then its value is an array with 5 elements. Simile

will automatically recognise this, and, as with data

types, maintain consistency checking that the

variable is used correctly in the equations for

other quantities.

3.3.3. Equation language

Simile provides the standard mathematical op-

erators and functions, as well as functions specific

to Simile (e.g. for array processing and for

simulation). Users can define their own functions,

which are simply edited into a text file in the Simile
directory, the only constraint being that the

function is expressible in Simile’s equation lan-

guage. Users can thus share user-defined functions

with each other.

Expressions can be conditional statements

(if. . .then. . .elseif. . .then. . .else), which can be

nested to any depth (i.e. any subexpression can

itself be a conditional expression).
Simile provides a powerful array-processing

language, so that the user does not have to resort

to procedural programming constructs (e.g. loops)

for processing arrays. For example, if [A] and [B]

are both 5-element arrays, then [A]�[B] creates

another 5-element array where each element con-

sists of the corresponding elements of A and B

multiplied together.

3.4. Putting it all together: an example model

Fig. 2 shows a simple example of a Simile model

(designed to illustrate the use of Simile’s visual

language, rather than for its plausibility as a

model). Combining our understanding of Simile’s

visual language with the labels used for the various

components enables us to ‘read’ the diagram as
follows:

‘‘The model consists of a fixed number of

fields and a possibly-varying number of

farmers (note the visual difference between

the two submodels). There is an ownership

association between farmers and fields (i.e.

we know which farmer owns which fields).
Each field can contain a grass and/or a crop.

(We can not tell from the model diagram

whether these are mutually exclusive, but we

can see that the existence of each sub-

model*/i.e. the presence of grass and the

presence of crop*/is conditional on the

variable ‘field type’.) The growth model for

the grass is based on a single state variable,
while that for the crop has separate state

variables for the green biomass and the

grain. Each field contains a multiple-layer

soil water submodel, with a state variable

(water content) for each layer. Grass and

crop growth are dependent on aggregate soil

R. Muetzelfeldt, J. Massheder / Europ. J. Agronomy 18 (2003) 345�/358 351



water, and in turn influence transpiration

losses from the soil water compartment.

Information on crop harvest is passed back

to the farmers via the ownership submodel
(so each farmer has access to the values on

the grain harvest from the fields that he

owns): this is used to build up the farmer’s

grain store, which is reduced by sales’’.

Note that we can produce this narrative simply

by reading the diagram: we need no prior knowl-

edge about the system. Note also that this diagram

is not merely a presentational device. Rather, the

diagrammatic notation, combined with the simple

setting of properties for some submodels, contri-

butes significantly to the mathematical structure of

the model, just as (in a much more limited way)
drawing a compartment-flow diagram tells a

model interpreter what are the state variables,

and what terms contribute to the rate-of-change

expressions. This dramatically reduces the amount

of information that the user needs to provide to

complete the model: in this simple case, most

elements needs only a value or a simple algebraic

expression.

4. Simulating model behaviour

4.1. Running the model

A Simile model defines a set of differential
equations. When a model is run, these equations

are solved by numerical integration. Currently, we

use simple Euler integration, but we intend to

provide other methods.

In order to run a model (i.e. simulate its

behaviour), the user simply selects a Run menu

command, sets the simulation time settings in a

Run Control dialogue window, calls up whatever
displays are required, then clicks a Start button.

What’s actually happening behind the scenes is

that Simile generates a program in a procedural

language, and it is this program which is executed.

In each time step, the program first calculates the

rate of change for all state variables, then updates

Fig. 2. An example Simile model diagram. See text for a verbal description of the model.

R. Muetzelfeldt, J. Massheder / Europ. J. Agronomy 18 (2003) 345�/358352



all state variables. The program can be generated
in Tcl or C�/�/ (user’s choice). Since Simile’s

visual interface is written in Tcl/tk, every Simile

user automatically has Tcl installed, so this is the

standard language to use. If Microsoft’s Visual

C�/�/ is installed, or the user has installed

the public domain Gnu C�/�/ compiler, the

any model can be alternatively run in compiled

C�/�/*/with a speed increase of several hundred
times.

Previously-constructed models can be run as

stand-alone models, without having to load them

into Simile and generate the Tcl or C�/�/ pro-

gram. The only requirement on the user is that

they have previously installed Tcl/tk, since this is

required for the visual interfacing.

4.2. Displaying the results of model behaviour

Simile provides a range of input/output tools
(also know in Simile as ‘helpers’) for displaying the

results of model behaviour. These include:

. a basic time-series display helper for showing

the value of a model component over time. If

that component has multiple values (for exam-

ple, it is inside a multiple-instance submodel),

then a line is drawn for each separate instance.

. a tabular display helper, which also enables

tabulated values to be exported in.csv (comma-
separated value) format for further analysis by

e.g. a spreadsheet.

. map displays for grid-square and polygon

spatial models.

The user is not limited to the display tools

provided with Simile itself. Users can provide their

own, either by editing the programs for the ones

already provided or by writing new ones from

scratch. This is possible because each display tool
is actually a Tcl/tk program residing in a directory

in the Simile installation. Since Tcl/tk is an

interpreted language, each program is a text file,

which can be edited. Moreover, each time you run

Simile, it looks in this directory to see what files

are there, and these provide the list of currently-

available helpers. Therefore, all the user has to do

is to add another file to this directory to get
another helper added to the list.

5. Applications

Simile has been used to develop a wide range of
demonstration models. These include models of:

. population dynamics;

. carbon, nutrient and water dynamics;

. animal movement;

. age- and size-class models of animal popula-

tions and tree stands;

. individual-tree-based forest models;

. models of evolutionary processes over multiple

generations;
. spatial models of landuse change.

A sample of these models can be seen in the
Model Gallery section of the Simile web site. The

use of Simile for forest modelling is discussed in

Muetzelfeldt and Taylor (2001).

In addition, Simile has been used in two major

funded research programmes:

5.1. ModMED

The ModMED project (http://www.homepage-

s.ed.ac.uk/modmed/) was concerned with under-

standing the dynamics of Mediterranean macchia

(maquis) vegetation in response to fire and graz-

ing, in order to inform the development of policy

for the management of this type of vegetation. It
involved the collection of data from historical

sources, field studies and laboratory studies in

Italy, Greece and Portugal. These data were used

to develop Landlord, a hierarchical, GIS-based

model of landscape dynamics, with individual

pixels being modelled with community-level vege-

tation models. A variety of interchangeable com-

munity-level models were developed, including
species-based and individual-based models.

Simile was used to develop the community-level

models. An interface was developed enabling the

user to specify the correspondence between the

variables in the Simile model and those required

by Landlord, and Simile’s C�/�/ program gen-

R. Muetzelfeldt, J. Massheder / Europ. J. Agronomy 18 (2003) 345�/358 353

http://www.homepages.ed.ac.uk/modmed/
http://www.homepages.ed.ac.uk/modmed/


erator was modified to wrap up the generated
program as a DLL with an interface compatible

with that required by Landlord. Thus, any vegeta-

tion model developed in Simile could be exported

to run within the landscape-level GIS.

5.2. FLORES

FLORES (http://www.ierm.ed.ac.uk/flores) is

an international programme concerned with un-
derstanding the interaction between people and

their natural resources at the forest margin in

developing countries, in order to help in develop-

ing policy to improve their livelihoods. It has

included the development of models in Indonesia,

Zimbabwe and Cameroon through a collaborative

process involving many different types of expert:

local people and researchers in the social, ecologi-
cal and agronomic sciences. The long-term aim is

to develop models that can be used with some

degree of confidence to explore the consequences

of alternative policy options, but in the short term

the major benefit of the FLORES programme has

been the engagement of people who do not

normally talk to each other in a process of

participatory model development.
A typical FLORES model represents a very

detailed view of rural communities. On the human

side, the community is modelled in terms of a

village submodel, containing multiple instances,

one for each village. This contains a household

submodel, represented as a population submodel

to allow for changes in the number of households

through immigration or breaking up on the death
of adults. This in turn contains submodels for

household-level demographics, household fi-

nances, annual (strategic) decision-making, and

weekly labour allocation. The biophysical side is

represented as a multiple-instance patch submodel,

representing areas such as fields and forest clear-

ings, and it contains submodels for forest dy-

namics, crop growth etc. A tenure submodel
between households and patches is used to capture

ownership and right-of-access relationships.

All FLORES models have been developed using

Simile, for three main reasons. First, Simile’s

visual modelling interface has enabled people

with little or no modelling experience to become

involved in the modelling process, at least down to
the level of commenting on the components and

interactions in the model. Second, Simile has the

expressiveness required for FLORES modelling,

especially as regards the individual-based repre-

sentation of households and patches, and associa-

tions between objects such as tenure. Third,

Simile’s ability to generate compiled C�/�/ means

that complex models, involving 100s of equations
and 1000s of objects can be built which will run

very efficiently.

6. Beyond Simile

Our aim in producing Simile is not to develop a

monolithic modelling package. Rather, it has been
to be part of a community developing tools for

modelling in agro-ecological research. This ambi-

tion has one fundamental requirement: a common

language for representing models, so that models

can be shared between tools produced by many

different groups around the globe. Since no such

language currently exists, we have decided to use a

public text format for saving Simile models to file,
so that in principle any group can produce

additional tools for processing Simile models.

In this section, we address two topics related to

this theme. The first*/the html generator*/shows

how it is possible to produce tools for processing

Simile models completely independently of Simile

itself. We then discuss the use of XML for

representing Simile models.

6.1. Html generator for Simile models

The html generator is a program, written in the

Prolog logic-based language, that can take any

Simile saved model and generate a textual descrip-

tion of the model, marked up with html to render

it suitable for viewing in a standard web browser

such as Netscape or Internet Explorer. The model
is presented submodel by submodel, with each

submodel being described in terms of its compart-

ments, flows, variables etc. The interactivity of

html is exploited by hyperlinking all references to

variables in equations: clicking on any of these

jumps you to the part of the document where that

R. Muetzelfeldt, J. Massheder / Europ. J. Agronomy 18 (2003) 345�/358354

http://www.ierm.ed.ac.uk/flores


element is defined. It is thus very easy to ‘browse’
around a model in a controlled, directed way.

The html generator program is written in such a

way that it is very easy to change the amount of

information that is produced. For example, it is

very easy to modify the program so that it simply

produces a hierarchical list of all the submodels*/

useful for a complex model with a dozen or more

submodels.

6.2. XML representation of model structure

XML stands for the eXtensible Markup Lan-

guage, a notation for marking up the content of

documents. Html consists of a set of predefined

tags, and marks up the appearance of documents

for human readers. In XML, a community of

people decide on what tags they will use to mark
up documents, with a view to the documents being

processed by computer programs rather than read

directly by humans. For example, a group of

ecologists might decide to use the tag �species�
to delimit all species names in a document, and it is

then possible for a program to retrieve all docu-

ments containing a reference to a certain species.

XML is widely considered to be fundamental to
the movement of content-rich documents across

the internet, and to be a core technology for the

Semantic Web, e-science and scientific Grids.

XML documents can be viewed in current web

browsers, there is a rapidly increasing number of

tools for handling XML documents, and all the

major programming languages have an applica-

tion programming interface (API) for processing
XML documents.

We have developed an XML Schema for

representing Simile models. This has been designed

for efficient processing by programs that wish to

read or write model structure, while at the same

time allowing the XML documents to be reason-

ably human-readable. A �submodel� tag is used to

delimit each submodel, and these can be nested to
reflect the nesting of submodels in the original

model. There are tags for each of the Simile model

elements: �compartment�, �flow�, etc, each con-

taining further tags for the various attributes of

each model element. The XML representation of

any Simile model can be viewed in a web browser,

and branches of the model can be opened and shut
in the same way that one can use Windows

Explorer to view a file directory system. Currently,

the XML is generated from a saved-model file, but

we intend to move towards the use of XML as

Simile’s native model-representation format.

7. Discussion

The development of Simile has been motivated

by three considerations: major problems with the

current practice of modelling in agro-ecological

research; the diversity of modelling paradigms that

exist and usually considered as being mutually

distinct; and the belief that computers can provide

much more help for the modelling process than
simply running simulations. In this section, we

consider how well Simile addresses these issues,

then how it compares with other approaches.

7.1. How simile addresses the problems with

modelling practice

The problem of accessibility of modelling for

non-programmers is addressed by having an
intuitive visual interface. This encourages a two-

stage approach to modelling: a diagrammatic

conceptual stage, and a quantitative stage. In

fact, one of the main impacts of Simile within

the FLORES project has been its use for ‘red

modelling’ (a term derived from the fact that the

model diagram icons are red until a value or

equation has been entered) in a participatory
modelling process. The visual interface also greatly

helps the problems of maintaining complex mod-

els, and in communicating models to others.

The difficulty of documenting models, and the

danger that documentation no longer matches a

model, is addressed by the fact that models are

largely self-documenting*/you do not need meta-

data saying how many state variables there are*/

and by attaching comments to model elements.

The problem of (sub)model re-use is addressed by

Simile’s ability to load submodels (which can be

complete Simile models) from file, and by a

flexible ‘plug-and-play’ mechanism. Similarly, the

opposite problem*/of testing submodels as inde-

R. Muetzelfeldt, J. Massheder / Europ. J. Agronomy 18 (2003) 345�/358 355



pendent models*/is addressed by allowing any
submodel to be saved to file as a full Simile model.

7.2. Simile’s expressiveness

From an theoretical point of view, the most

interesting aspect of Simile (indeed, any modelling

language) is the choice of primitive model ele-

ments, especially for a language that claims to be

able to cater for a range of modelling paradigms.
Should there be fewer primitive elements?*/it’s

hard to see how some modelling requirements

could be expressed if we removed any (except for

the ‘initialiser’ element, whose role could be

performed by a migration element set at time

zero). Should there be more? and, if so, is that

because they are needed (i.e. there is a modelling

requirement that is not satisfied by the current set
of symbols), or because it would make life easier

for the model designer? In fact, we are planning to

introduce a ‘memory’ element: one that retains its

value (and is thus a state variable) until explicitly

set to a new value. This is certainly not needed*/

we can do the job with, for example, a compart-

ment-flow structure*/but would be more intuitive

and parsimonious. What else should there be?
An interesting slant on this theme is to allow for

a distinction between the primitive elements inside

Simile, and those that the model designer has

available. In fact, even now, Simile’s internal

language includes a ‘function’ element, and early

versions actually showed a function symbol linked

to every calculated variable. What you use now is

in effect a shell around ‘core’ Simile*/and it is
possible to imagine other shells: e.g. for engineer-

ing block diagram notation, for chemical pro-

cesses, etc. Fall and Fall (2001) argue for the

development of domain-specific languages, giving

an example of one they have developed for

modelling landscape dynamics. We accept that

reducing the conceptual gap between the modeller

and the modelling language*/allowing modellers
to express familiar concepts directly*/is desirable,

but we argue that it is far better to do this as a shell

around generic modelling software. This allows

more experienced users to work at a lower level,

and allows different domain-specific languages to

be combined in a single model.

7.3. ‘Computer modelling’ is more than just running

simulations

Currently, in agro-ecological modelling, almost

all models exist on the computer as a computer

program in a procedural programming language

such as BASIC, Fortran or C/C�/�/. As a

consequence, most modellers consider that the

role of the computer is restricted to running
simulations.

However, there are in fact many aspects of the

modelling process that computers can help with.

The html generator, described above, is just one

example, showing how the structure of a model

can be displayed in a variety of ways. We could

generate different program code from the same

model, to simulate its behaviour on a lowly PC (at
prototype stage) and then on a parallel computer.

We could treat the model structure as a database,

and search through for (e.g.) all variables influen-

cing X , or all variables whose equation consists of

a variable multiplied by a constant. We could

search through a model catalogue for all models

with certain characteristics*/then do an auto-

mated comparison of model structure to identify
similarities and differences between two models.

We could automatically generate a textual descrip-

tion of a model, using canned phrases, and we

could generate narratives explaining model beha-

viour by a program that has access both to

simulation results and to model structure. How-

ever, what we do need to recognise is that all such

tasks require that the model is represented declara-
tively (in the sense used in Section 2), as a set of

symbols that have defined meaning in modelling

terms.

7.4. Simile compared to other visual modelling

environments

The main difference between Simile and other

System Dynamics modelling environments used in
agro-ecological modelling is Simile’s ability to

specify multiple instances of an entity. It may be

considered to be a small difference: after all, most

of the other environments have array variables,

and some notion of submodel. However, the

ability to draw a box around some part of the

R. Muetzelfeldt, J. Massheder / Europ. J. Agronomy 18 (2003) 345�/358356



model and then specify many instances makes a
huge difference: suddenly, spatial modelling and

individual-based modelling become simple.

7.5. Simile compared with object-oriented/

component-based modelling

Simile’s comparison with object-oriented/com-

ponent-based approaches (OO-COM for short) is

rather more interesting. At one level, there’s the
fairly obvious difference that OO-COM involves

programming, and Simile does not: for many

people, that’s a pretty significant difference. How-

ever, with the arrival of UML (Rumbaugh et al.,

1999; Stevens and Pooley, 2000), and CAD tools

(such as Rational Rose) (Quatrani, 2000) which

not only support the production of UML dia-

grams but also generate partial or even complete
code for UML models, this distinction will no

doubt diminish in future.

There is a close correspondence between UML

class diagrams and Simile diagrams with the

influence arrows suppressed. In Simile, the struc-

ture of the model is represented by quantities and

submodels grouped in container submodels and by

associations between submodels. There is a direct
mapping between this and a UML class diagram,

with submodels corresponding to classes, Simile

quantities corresponding to UML attributes, nest-

ing of submodels in Simile corresponding to a

composition association (contained class), and

general associations having the same interpreta-

tion in both paradigms. Moreover, in UML new

contained classes are often added to handle
specific behaviours, just as submodels may be

inserted into a containing submodel in Simile to

handle certain tasks.

The influence diagram notation, fundamental to

System Dynamics, is not present in UML. The

similar data flow diagramming notation used to be

used in software design (Rumbaugh et al., 1991),

but is now deprecated. The collaboration diagram
in UML is similar, but this shows the transfer of

information between objects, not attributes, and

thus is of much less use to the modeller.

However, the term OO embodies a particular

conceptual framework, which differs in significant

respects from that of Simile. First, in object-

orientation the flow of information is conceptua-
lised in terms of message-passing, whereas in

Simile we think in terms of the influence relation-

ship between variables. Second, it has a strong

notion of data-hiding, restricting access to that

subset of model variables which the programmer

has chosen to make accessible. In Simile, in

contrast, the user running a model has access to

all model variables during the simulation, allowing
any variable to be displayed and greatly helping in

the analysis of model behaviour. Third, object-

orientation generally involves a commitment to the

concept of inheritance and specialisation hierar-

chies, whereas Simile has no such concept. It is

possible this will be included in Simile in the

future, but to date we have found that Simile’s

mechanisms for submodel re-use and adaptation
are sufficient, and we doubt the feasibility of

defining ‘standard’ taxonomies for ecology.

8. Conclusion

Simile demonstrates the feasibility of developing

a visual modelling environment that has an
intuitive user interface while at the same time

having the expressiveness needed to handle a wide

variety of model types and having the capability of

generating computationally-efficient runnable ver-

sions of models. This approach offers a serious

prospect of improving the efficiency and effective-

ness of current practice in agro-ecological mod-

elling*/the more so if the further development and
refinement of the approach becomes supported

across the research community rather than being

the activity of one group.

Acknowledgements

Simile was developed in projects partly funded

by the UK’s Department for International Devel-
opment (DFID) under the Forestry Research

Programme (Project Code R5652 and R7635),

and in the ModMED project funded by the

European Community’s Environment Research

Programme. The Simile software has been devel-

oped by Jasper Taylor (University of Edinburgh).

R. Muetzelfeldt, J. Massheder / Europ. J. Agronomy 18 (2003) 345�/358 357



We acknowledge useful exchange of ideas with
members of the ‘modelling frameworks’ group.

Appendix A: URLs

FLORES http://www.ierm.ed.ac.uk/flores/

ModelMaker http://www.modelkinetix.com/

ModMED http://www.homepages.ed.ac.uk/
modmed/

Powersim http://www.powersim.com/

Simile http://www.ierm.ed.ac.uk/simile

Stella http://www.hps-inc.com/

Vensim http://www.ventana.com/

References

Acock, B., Reynolds, J.F., 1997. Introduction: modularity in

plant models. Ecol. Model. 94, 1�/6.

Acock, B., Reddy, V.R., 1997. Designing an object-oriented

structure for crop models. Ecol. Model. 94, 33�/44.

Chen, J.-L., Reynolds, J.F., 1997. GePSi: a generic plant

simulator based on object-oriented principles. Ecol. Model.

94, 53�/66.

Costanza, R., Duplisea, D., and Kautsky, U. (Eds.), 1998.

Modelling ecological and economic systems with Stella.

Ecol. Model. 110: 1�/103 (special issue).

Costanza, R., Gottlieb, S., 1998. Modeling ecological and

economic systems with Stella: part II. Ecol. Model. 112,

81�/247 (Special issue).

Costanza, R., Voinov, A., 2001. Modeling ecological and

economic systems with Stella: part III. Ecol. Model. 143,

1�/143.

de Wit, C.T., Goudriaan, J., 1974. Simulation of Ecological

Processes. Center for Agricultural Publishing and Docu-

mentation, Wageningen, The Netherlands.

Fall, A., Fall, J., 2001. A domain-specific language for models

of landscape dynamics. Ecol. Model. 141, 1�/18.

Forrester, J., 1961. Industrial Dynamics. Pegasus Communica-

tions, Waltham, MA, p. 464.

Grimm, V., 1999. Ten years of individual-based modelling in

ecology: what have we learned and what could we learn in

the future? Ecol. Model. 115, 129�/148.

Johnson, I.R., Thornley, J.H.M., 1985. Dynamic model of the

response of a vegetative crop to light, temperature and

nitrogen. Plant Cell Environ. 6, 721�/729.

Lemmon, H., Chuk, N., 1997. Object-oriented design of a

cotton crop model. Ecol. Model. 94, 45�/51.

Lorek, J., Sonnenschein, M., 1999. Modelling and simulation

software to support individual-based ecological modelling.

Ecol. Model. 115, 119�/216.

McCown, R.L., Hammer, G.L., Hargreaves, J.N.G., Holz-

worth, D.P., Freebairn, D.M., 1996. APSIM: a novel

software system for model development model testing and

simulation in agricultural systems research. Agric. Syst. 50,

255�/271.

Muetzelfeldt, R.I., Taylor, J., 1997a. The suitability of AME

for agroforestry modelling. Agroforestry Forum 8 (2), 7�/9.

Muetzelfeldt, R.I., Taylor, J. 1997b. The Agroforestry Model-

ling Environment. In: Agroforestry Modelling and Research

Coordination, Annual Report 1996-97, ODA Forestry

Research Programme, Project R5652. NERC/ITE Edin-

burgh.

Muetzelfeldt, R.I., Taylor, J. 2001. Developing forest models in

the Simile visual modelling environment. Paper presented at

the IUFRO 4.11 Conference on Forest Biometry, Modelling

and Information Science. University of Greenwich, 25�/29

June, p. 10. Available at http://www.ierm.ed.ac.uk/simile/

documents/iufro3.pdf.

Porter, C.H., Braga, R., Jones, J.W. 1999. An approach for

modular crop model development. Agricultural and Biolo-

gical Engineering Department, Research Report No 99�/

0701, University of Florida, Gainesville, Florida, p. 15.

Potter, W.D., Liu, S., Deng, X., Rauscher, H.M., 2000. Using

DCOM to support interoperabilty in forest ecosystem

management decision support systems. Comput. Electronics

Agric. 27, 335�/354.

Quatrani, T., 2000. Visual Modeling with Rational Rose 2000

and UML. Addison-Wesley, p. 288.

Reynolds, J.F., Acock, B., 1997. Modularity and genericness in

plant and ecosystem models. Ecol. Model. 94, 7�/16.

Richardson, George P., Pugh, A.L., 1981. Introduction to

System Dynamics Modeling with DYNAMO. MIT Press,

Cambridge, Mass. London, p. 413.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen,

W., 1991. Object-Oriented Modelling and Design. Prentice-

Hall.

Rumbaugh, J., Jacobsen, I., Booch, G., 1999. The Unified

Modeling Language Reference Manual. Addison-Wesley, p.

576.

Sequeira, R.A., Olson, R.L., McKinion, J.M., 1997. Imple-

menting generic, object-oriented models in biology. Ecol.

Model. 94, 17�/31.

Stevens, P., Pooley, R., 2000. Using UML: Software Engineer-

ing with Objects and Components. Addison-Wesley.

Timlin, D.J., Pachepsky, Y.A., 1997. A modular soil and root

process simulator. Ecol. Model. 94, 67�/80.

van Kraalingen, D.W.G. 1995. The FSE system for crop

simulation, version 2.1. Quantitative Approaches in Systems

Analysis Report no. 1. AB/DLO, PE, Wageningen.

R. Muetzelfeldt, J. Massheder / Europ. J. Agronomy 18 (2003) 345�/358358

http://www.ierm.ed.ac.uk/flores/
http://www.modelkinetix.com/
http://www.homepages.ed.ac.uk/modmed/
http://www.homepages.ed.ac.uk/modmed/
http://www.powersim.com/
http://www.ierm.ed.ac.uk/simile
http://www.hps-inc.com/
http://www.ventana.com/
http://www.ierm.ed.ac.uk/simile/documents/iufro3.pdf
http://www.ierm.ed.ac.uk/simile/documents/iufro3.pdf

	The Simile visual modelling environment
	Introduction
	Main features
	Visual modelling
	System Dynamics
	Disaggregation
	Object-based modelling
	Spatial modelling
	Modular modelling
	Fast simulation
	Customisable output displays and input tools
	Declarative representation of model structure

	The modelling language
	System Dynamic components
	The submodel and associated symbols
	Disaggregation
	Individual-based modelling
	Conditional existence of some part of the model
	Using a submodel to specify an association between objects

	Data structures and the equation language
	Data types
	Data structures
	Equation language

	Putting it all together: an example model

	Simulating model behaviour
	Running the model
	Displaying the results of model behaviour

	Applications
	ModMED
	FLORES

	Beyond Simile
	Html generator for Simile models
	XML representation of model structure

	Discussion
	How simile addresses the problems with modelling practice
	Simile’s expressiveness
	‚Computer modelling™ is more than just running simulations
	Simile compared to other visual modelling environments
	Simile compared with object-orientedŁcomponent-based modelling

	Conclusion
	Acknowledgements
	Appendices
	URLs

	References


